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This work is the sequel to S. Asvadureval. (2000,J. Comput. Physl58,116),
where we considered a grid refinement approach for second-order finite-difference
time domain schemes. This approach permits one to compute solutions of certain
wave equations with exponential superconvergence. An algorithm was presented
that generates a special sequence of grid steps, called “optimal,” such that a standard
finite-difference discretization that uses this grid produces an accurate approximation
to the Neumann-to-Dirichlet map. It was demonstrated that the application of this
approach to some problems in, e.g., elastodynamics results in a computational cost
that is an order of magnitude lower than that of the standard scheme with equally
spaced gridnodes, which produces the same accuracy. The main drawback of the
presented approach was that the accurate solution could be obtained only at some a
priori selected points (receivers). Here we present an algorithm that, given a solution
onthe coarse “optimal” grid, accurately reconstructs the solution of the corresponding
fine equidistant grid with steps that are approximately equal to the minimal step of
the optimal (strongly nonuniform) grid. This “expansion” algorithm is based on
postprocessing of the approximate solution, is local in time (but not in space), and
has a cost comparable to that of the discrete Fourier transform. An approximate
inverse to the “expansion” procedure—the “reduction” algorithm—is also presented.
We show different applications of the developed procedures, including refinement
of a nonmatching grid. Numerical examples for scalar wave propagation and 2.5D
cylindrical elasticity are presented. 2002 Elsevier Science
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1. INTRODUCTION

Recently an algorithm was presented for constructing a special sequence of steps w
permits one to compute Neumann-to-Dirichlet maps of certain Helmholtz equations w
exponential super-convergence [2]-[7]. The algorithm is based oe-ddbyshev ap-
proximation of the impedance on a predefined spectral interval, and the resulting “optirr
steps were successfully applied to solutions of problems in elastodynamics and elec
magnetics. This grid optimization approach allows one to obtain spectral convergenc
the Green function at a subset of a priori prescribed points (receivers) using second-o
finite-difference time domain (FDTD) schemes with between two and four grid poin
per wavelength, though globally the new scheme converges not faster than the stan
equidistant second-order scheme. The refinement of the optimal grid had to be done «
the receivers as well as at the source points. For some applications in remote sensing, v
the solution is generated by few point sources and measured at only few receiver poin
is not a disability, but generally it is an essential drawback.

One can view the grid optimization procedure as an extension of Gaussian quadra
to second-order finite-difference schemes. Just as a Gausgiaint quadrature rule for
numerical integration is chosen to be exact floipdlynomials, we choose okrnode grid
so that some Rfunctionals of the solution are exact. It so happens that these function
are related to projections of the exact solution on certain subspaces with good (spec
approximation properties. In other words, in some sense, three-point FD approximati
with “optimal” steps are equivalent to spectral Galerkin approximations, and the latter c
be eventually recovered from the former using a linear postprocessing transformation
Theoretically, this procedure should yield global exponential convergence, but we foun
difficult to implement, mainly due to some loss of accuracy.

Here we simplify, and eventually circumvent, this problem by approximating a FD opel
tor on a fine equidistant grid, instead of the differential operator, as was done originally.
use the Pag-Chebyshev approximation of the finite-difference impedance, computed o
fine grid, instead of the true impedance of the continuous problem. As a result, for a gi
spectral interval we can approximate with computer precision the accurate impedanc
the fine equidistant finite-difference scheme by the impedance of the coarse optimal sch
(with much fewer grid nodes). The steps of the optimal grid turn out to be increasing, w
the first, minimal, step being approximately equal to the step of the fine equidistant g
The grid optimization algorithm can now be viewed agia reduction

The grid expansionalgorithm presented here transforms the solution from the coar
optimal grid to the fine equidistant one. Lst(y) = [ux(X1, ¥), ..., Uk(Xk, ¥)]T be the
FD solution of a multidimensional problem obtained on the optimalxyrid. ., x«, and let
un(¥) = [unKe, ¥), ..., un(Xn, ¥)]T be the solution on the equidistant giid . . ., X,
with N > k (in both cases the dependence on other spatial and/or temporal variable
hidden in the dependence on vecior. Here we assume that = X; and that the equation
is homogeneous with a honhomogeneous boundary condition at this node. The opt
grid exactly matches the impedance of the equidistant grid at the first node for $ome
fine grid solutions. The PadChebyshev approximant used for the match converges
least exponentially, while the equidistant finite-difference scheme converges only with
second order, which is why with relatively smil{compared td\) the optimal grid would
match the impedance of smooth enough fine grid solutions with error that is smaller ti
the error of approximation of (either) grid impedance to the true continuous impedance
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FIG. 1. Propagation of a scalar 1D wave on the equidistant mesh.

other words, the fine equidistant grid solutions can be well approximated on a relativ
small subspace. For this subspace the expansion algorithm is defined as

un () = Suk(¥), 1.1

whereSis anN x k (full) matrix such thatSec 1 = ey 1. To achieve accuracy of 1% on
the equidistant grid for wave problems, it is typically required to have more than 20 poi
per wavelength, while the expansion algorithm reconstructs such fine grid solutions w
good precision using no more than 3—4 points per wavelength on average. We sh
notice that except for the first node the optimal solution and the fine equidistant one do
match exactly even for accidentally coinciding nodes, and so expansion is not equiva
to interpolation. For inhomogeneous equations we also need to construct the inverse tc
expansion transformation, what we call “reduction.”

The main concept can be illustrated by Figs. 1 and 2, in which we show the propaga
of a one-dimensional scalar wave. The problem is the same as in [2, Section 2.3]; itis gi
by the homogeneous 1D wave equation onil[0x [0, T] with zero initial conditions, the
homogeneous Dirichlet conditiomat= 1, and the Neumann conditiomat= 0 that defines
the source term. Herg is equivalent to the time variable. The solution is a Gaussian wavele
the results of its computation on the fine equidistant grid are presented in Fig. 1. The me
is also shown; here the total number of mesh points is 300. As we see, the wave pa
remains compact at all time. In Fig. 2 one can see the solution, computed on a correspon

1 Every second mesh point is omitted in this figure because of the resolution limitation of the plotting softwa
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FIG.2. Propagation of a scalar 1D wave on the optimal mesh corresponding to the equidistant mesh prese
in Fig. 1.

optimal mesh. The mesh is also shown; its minimal step is approximately equal to the :
of the equidistant grid, but the total number of mesh points here is 32. On this mesh, as
wave is traveling away from the poirt= 0, definite dispersion appears, which dies away
as the wave is propagating back to the origin, where optimal and fine equidistant soluti
coincide with the precision of the calculation of the optimal mesh (usually the compu
double precision). We obtain expansion maBithat transforms the optimal solution to the
fine equidistant one at all grid nodes of the equidistant grid and compare the error of
transformation to the error of the approximation of impedance.

It will be demonstrated that this technique can be easily applied to complicated multit
main problems. We will also consider different applications of the described procedur
including one to nonmatching grids, for which some subdomains are gridded in a stanc
equidistant fashion, while others employ the optimal mesh in the directions tangentia
the interfaces. In this case the expansion and reduction transformations are used to n
the solution at the interfaces at every time step of the FD experiment.

2. PRELIMINARIES

Consider a 1D wave equation on [0] x [0, T], written as a first-order system

dd do dov dd
4t " dx dt = ax’ @D
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with zero initial and some boundary conditions, which will be specified later. Using tt
Fourier transformation = [ Qe "*'dt, v = [ de~'*' dt, we reduce (2.1) to the first-order
ordinary differential equation system

du

—, =, 2.2
dx dx (2.2)

wherex = —w?. Throughout this paper we assume thandv vanish foro > wmay, i.€.,
we are looking for an approximation to the solution of (2.2) on the spectral interval{],
wherer; = —w?, andi, = 0.

2.1. The General 1D Scheme

We consider the discretization of the system (2.2) with the mixed boundary conditic
u(L) = 0 anduy(0) = —1,

VUi = % i=1... Kk Uui=0,
‘ (2.3)
U — U . 1
Viv=" 1 i=1...,k vo=-——.
i hi 0 ﬁ
This can be rewritten in a matrix form as
Viu—Xv = hi'e/vi, VAv—Yu=0, (2.4)
whereu, v are vectors of lengtk, u = (uy, ..., Ux), v = (v, ..., vx), X is a matrix with

1/h; on the main diagonal and1/h; on the subdiagonal, andis a matrix with—1/ h; on
the diagonal and/Ih; on the superdiagonal.
It is easily shown by direct computation that

(BX)T = —CY, (2.5)

whereB = diag(h;) andC = diaghy).
System (2.4) is often written as a single equationufas

AU — XYu = hile. (2.6)

To bring this system to a symmetric form, we multiply it on the left BY?, and let
i = BY2u, which leads to

Al — Hi = h; Y%y, (2.7)

whereH = BY2XY B /2 is easily checked to be symmetric.
One could also write (2.4) as an equationyor

AV — Y Xv = hythyte /v, (2.8)
or as a corresponding system foe= CY/2?y,

AV — Ha¥ = hithy Ve /v, (2.9)
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whereHg, = CY2Y XC¥2 is also symmetric. The subscript “d” here and in the future
stands for “dual,” since problem (2.9) is considered to be dual to problem (2.7).
Denote the eigenvalues &f by 6; and the corresponding eigenvectorssay|5 || = 1,
and note tha#; < 0. In fact,
= (§, H§) = (3, BY’XYB?5) = (B7'/?%§, BXYB /%)
= —(CY?y B Y?%5,CcY?YB V%) <0 (2.10)

here (2.5) was used, and the brackets denote the standard inner product.

LEMMA 2.1. The eigenvalues of § are 6;, and its eigenvectord® are related to§
by the following equalities

- 1 12
gD — . clyB V%, 189 =1, (2.11)
vV Y
-1
§ = ﬁsl/zxcl/zs“”. (2.12)
1

Proof. First let us show tha&“” are indeed the eigenvectors ldfg, with eigenvalues
0:

N 1 - 1 =
H(d)s(d) — Cl/ZY Xc—l/z — Cl/2Y B—]./ZS — — Cl/ZY B—l/Z(Bl/ZXY B—]./Z)S
| |

1
— ~ Cl/ZY 871/2H§ — 0 q(d)

—6i
To show that|3?|| = 1, we note that
< 2d ~<d>> 1 <C1/2Y Bfl/Z Cl/ZY B-1/2% > =1,
—0
by way of derivation (2.10).

Equation (2.12) follows from (2.11) and the fact that, §) is the eigenpair oH =
BY2XYB 12 m

The solutions to (2.7), (2.9) can be written according to eigendecomposition as

1/2

Al— H)™t 1/2§ j 2.13

( ) e = P 9| ( )

7= ——hth; Y2 (10— Hig) e = ———hyth; Y §k j 53 59 (214
\/X 1 ' (d) \/x 1 ' < % — 9| s .

wheres ; and§'9 are the first components gfand3®, respectively.
It is convenient to define the vectasis= B1/23 ands{d) C*l/zs(d), and note that

XYs =65, YX§¥=65",
(s. Bsj) = 8. <s“” sy =4, (2.15)

V 9| @ =Ys, v—6is= (d)
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where formulas (2.11), (2.12) and (2.13), (2.14) are used$gnd Kronecker's symbol.
With these definitions, the solutions to systems (2.6) and (2.8) are now written as

k
u=8"0=% AS“Q s, (2.16)
i=1
1/2 1., : ﬁ(? ()
v=C W2 = - —_pty L (@ 2.17
Nl ere (2.17)

i=1

Finally, we briefly describe the problem with the Neumann boundary condition on the “fa
end. For it, the boundary conditions to system (2.3 ate = uy, or, equivalentlyp, = 0,
and hence (formally keeping; as an unknown variable) we make the following formal
change in (2.3): the stelp is set to be infinite. The rest of the above analysis remain
unchanged.

2.2. The Equidistant Scheme

The finite difference scheme (2.3) with potential and derivative nodes spaced onthe s
distance from each other, i.e., a scheme with

hi=hc=h/2, hh=hj=h, i=1..k=-1 j=2...Kk

is called equidistant. (For the Neumann problem the Biegbove is infinite.)

Of course, the analysis above is fully applicable to the equidistant scheme, as well as
with varying grid steps. However, to distinguish the equidistant scheme from the rest,
change the notation slightly. Throughout this paper, the quantities referring to the equidis
scheme will carry subscripts (eq), and, moreover, the métidy will be namedA and its
eigenvectors will be calleld and eigenvalues .

The analytic expression for the eigenvaluest\aé

4 hl
a:_ﬁgﬁﬂf),i=anM

with the parameteris= 2(i — 1) andl = 2(i — 1) + 1 corresponding to the Neumann and
Dirichlet schemes, respectively. The eigenvectors’ components are given by

Z.j =XiCOS[(j —l)h|7'[/2], i=1,...,N, j=1,...,N,

with the same values df and x; = 2 fori =2,..., N — 1, for both Neumann and
Dirichlet, andy; = v/2, xn = 1 for Neumanny; = 1, xn = /2 for Dirichlet.

2.3. Finite-Difference and Spectral Galerkin Approximations

Generally, the scheme (2.3) has second-order global convergence. However, it was st
in [8] that there exists a set of grid stelpsandh; independent of such that the finite-
difference solution at the boundary becomes algebraically equivalent to the one of
polynomial spectral Galerkin method for alland so it converges exponentially. Moreover,
it is possible to construct a transformation of type (1.1) that transforms the finite-differer
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solution to the polynomial spectral Galerkin one globally. In [8] this approach was propos
but not implemented numerically. Here we briefly outline this concept.

Let us solve the continuous problem using the standard spectral Galerkin methoc
the k-dimensional polynomial subspace span— L, (x — L)3, ..., (x — L)Z+1}. If we
denote byy; andz respectively the eigenvalues and eigenfunctions of the spectral Galer!|
approximation (the Ritz eigenpairs), then the solution of the latter can be represented :

k

Us(X) =Y Z'io)_iz'n(x) (2.18)
i=1 !

Obviously,ug converges ta exponentially for allx € [0, L]. At the boundaryx = 0 the
spectral Galerkin solution can be represented as

k
Z (0)2
uc(0) = fo) = ~“—,
A
where fg is a so-called Galerkin—Petrov impedance function (the Neumann-to-Dirich
map). It can be shown thdg is the simple Paglapproximant at = 0to the true impedance
function of (2.2),u(0) = f ().
Using (2.16), we can define the discrete impedance function of (2.3) as
k
1
A—6"

U1 = fk) =
i1

The next step is to findh; and hi such thats; = n;i and sfl = 7 (0)2. So we construct a
finite-difference scheme witlfiy = fs. This is the same as solving an inverse impedanc
problem for a string ok unknown point massds and weightless springs with stifnesses
h; (see Appendix B for details).

From the spectral representations (2.18), (2.16) follows the global expansion formul

k
Us(X) =z (X){uk, Bs).
i=1
This formula transforms the finite-difference solutianto the spectral Galerkin solution
Ug(X). The inverse transform (reduction) can be written as

k

L
Uk = Z [/0 Us(X)z (x)dx} S.

i=1

Since the above transforms do not explicitly dependipthey can be used in the time
domain and in multidimensional problems.

The above approach would allow us to obtain spectral convergence using only the sin
two-point approximation of the first derivatives. However, instead of the polynomial spect
Galerkin impedance functionfg; we will use the Pagl~-Chebyshev approximant to the true
impedance. The reason for this is that thed2aZhiebyshev approximant is near optimal or
large spectral intervals [3] and allows one to approach the theoretical limit of two poit
per wavelength, known as the Nyquist limit [2, 7]. We note the well-known fact that tt
corresponding limit of the polynomial spectral Galerkin method ®ints per wavelength.
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3. CONSTRUCTION OF THE OPTIMAL GRID

Our goal here is to construct a sequenkig i) of steps for system (2.3) so that the
impedanceuy ; of the solutionux approximates the impedancg ; of the solutionuy
of the equidistant scheme with a given stepin fact, we define the equidistant grid
by providing two parameters: the numbi, of minimum wavelengths in the physi-
cal region [Q L] in question and the numbeP, of points per minimum wavelength.
It is essential that the Neumann and the Dirichlet equidistant problems are solved
the same grid; we choose the grid with the skeg (2L)/(2N — 1), with N = N, P,,.
We are seeking the approximation of the impedances on a given spectral irterval
[A1, A2] with A, = 0, and we calh the number of eigenvalues of A that fall onto that
interval.

Recalling (2.16) and the notation chosen for the equidistant scheme, we obtain an
pression for the impedance of the equidistant grid,

N 2
Zt A —
Una=fu@) = 7= = fn@) + fn G,

i=1

where f \ denotes the smooth part &f on the spectral interval, i.e., the part of the sum
running fromn + 1 to N.
For the optimal scheme being sought, we have

N Sz
Ut = fiu@) =) —
S A0

We construct an approximatidi(i) to fy (1) of the formfy (1) = fN(A) + f_k(/\),where
i =S (3.1)
— ). ’

is a good approximation to the smooth part of the “equidistant” impeddﬁp(a). (In
other words, we match the poles of the function under approximation on the given spec
interval exactly and approximate only the smooth part on that interval).

Having obtained all thk eigenvalues oH and the first components of all its eigenvectors
(respectivelyg; ands 1), we can proceed to obtain the optimal grid steps by solving th
inverse spectral problem (see Appendix B).

3.1. Pad-Chebyshev Approximation

The approximation of the smooth part can be performed by various methods; we cho
the Pa@=Chebyshev approximant, i.e., the functidp with the first 2k —n) — 1
Chebyshev coefficients coinciding with those fof. Since in the sections explaining the
expansion/reduction procedures we will need the apparatus required in the procedur
finding f and the following reconstruction of the “optimal” steps we will next concentrat
on these procedures.
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We want to construct thé — 1) /m] rational gpproximanf_k(x) to f (A) onthe interval
[A1, A2] with fy asin (3.1) withm = k — nand f (A) having a general form

_ 0
f(n) =/  —x)"rdr(x), (3.2)

and with t(x) a positive discrete measure ¢roo, 0]. The general theory of Stieltjes
integral is considered in [15, Chap. 6]. In this paper we only deal with piecewise const
nondecreasing functionshaving a finite number of jump pointg with (positive) jumps
aj,i.e,7(X) =) ;. p aj, Witha;, b; € R, a; > 0, anddr (x) = }_; aj6(x — by).

We must now find parameteys, n;, such that the firsttd Chebyshev coefficients of the
functionsf andf, adjustedto the spectralinterval| A,], coincide, which is the definition
of the Paé=Chebyshev approximant. Obviously, matching the truncated Chebyshev se
instead of the Taylor one as in the simple Pa@lds better convergence of the approximan
on the interval. Similarly to the simple Padthe Pad-~Chebyshev approximant can be
computed in terms of Gaussian quadratures and Stileties moments [3].

Below we outline the material presented in more detail in [6].

To find the Pad~Chebyshev approximant, we first transform the interkal J] in
guestion into 1, 1] by making the change of variabl@s= [A1(1 — w) + A2(1+ w)]/2.

Introduce the Zhukovsky functiog (t) = (t +t71)/2, t £ 0 and its inverseb(z) =
Z++/22—1, ®(2) > 0 for ze R, z > 1. Using the Chebyshev series for a simple pole
(see [14, Sect. 10, (38)] or [1, 22.9.9]), we get

a2 A0 N
(=x) —/\2_/\1{ 1_K(X)2§K(X)T|[M(/\)]}, (33)

whereT; are Chebyshev’s polynomials, the prime symbol means that the tednf@ris
to be divided by 2, and

2X — (A2 + ?»1)]_1

K(X):d)[ o

(3.4)

By the use of the formulas (3.2) and (3.3) and some manipulations one can predémt th
Chebyshev coefficier of the functionf with the shifted argument as

= 8 O kX |
a[f]= T /m 1_K(X)2K(X) dr(x).

Let

Ao+ 2\t
,0=—d>(— 2+ 1) , O<p<1l,
A2 — A1

and make the change of variabtes: « (x); then

_ 8 0| .
alfl =~ [ ddrw.

p
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with 7 (t) a positive measure or{p, 0] such that

o —3jkby)
t(t) = Zj: «bp<t 1 — i (bj)2’

The analogous expression fok(n) is

- 8 <~ Yifi .
f = — 15) l th P ).
alful Xz—kljzzll—g“jzg“ with ¢j = k()
It follows that the formal condition oryj, »; for a rational function f_k(k) to be
the [(m — 1)/ m] Padg—Chebyshev approximant fq1) is

/tdr(t)_ Z y’“Z;J, |=0,1,...,2m— 1. (3.5)

This is a moment problem of the type (A.9), considered in Appendix A.

To find the functionf, we perform the Lanczos process (see Appendix A) in the lin
ear spaceR[t], supplied with the inner produgt, .) determined by the measute i’e.,
(p,q) = fpo pt)qt)dz(t), p, g € R[t], with the operator of multiplication by the inde-
pendent variablé and the initial vector 1 (a constant polynomial). At tihéh step we will
have

0 m
(1) = / thdEt) = [113(T'en &) = 1117 b2t} (3.6)
-p

=1

forall0 <l <2m—1. Here(bJ ,t )are the eigenpairs of the Lanczos tridiagonal symmetri
m x mmatrix T and||1]|? = f dz.
Comparing (3.5) and (3. 6) we see that the eigenpaifs sHtisfy

tj=¢j, bji= 2|| =2 3.7)

We can thus easily determing andy; (the function (3.1) so defined is really Markov) and
then use the expressions

sj2+n,1 =Y%Y;j, 9]+n =1nj- (3.8)

3.2. Approximating the Continuous Impedance

The reader might notice thatin our previous paper [2] we proposed the computation of
“optimal” finite-difference grid based on the approximation of the continuous impedanc
rather than the approximation of the impedance of an equidistant scheme, as desci
above. The steps resulting from these two different approaches will be slightly differe
and, of course, the impedance of the former scheme will be more accurate (when comp
to the analytic solution) than the latter.

There are two reasons for our change of mind.



DIFFERENCE GAUSSIAN RULES FOR HYPERBOLIC PROBLEMS 35

The first reason is that the procedure of direct approximation of the true continuc
impedance function generates the minimum step that is a little smaller than the step of
equidistant grid which produces the same error in the approximation of the impedar
Thus, in practice, when the resulting finite-difference scheme is to be used for sc
tions of time-domain equations and is to be implemented using explicit time-steppil
we find that the Courant—Frederix—Levy (CFL) stability condition of the so obtained o
timal scheme is more restrictive than that of the corresponding equidistant scheme
time step used in the optimal scheme producing an error of about 2% is approxima
10% smaller than the time step of the equidistant scheme giving the same accurac
reported in [2]). This fact makes the use of such an optimal grid less advantageous,
even though the benefit of using a smaller amount of grid nodes is still present, the
cessity of a smaller discretization time step negatively impacts the overall advantag
speed.

The approximation of the “equidistant” impedance proposed here cures this defect
the minimum step of the optimal scheme obtained this way is no smaller than thie ste
of the equidistant grid, and thus the stability condition of the new scheme will be no mc
restrictive than that of the corresponding equidistant scheme. Indeed, the process of
struction of the optimal mesh based on the Lanczos algorithm described above prod
the matrixH for which the spectrum is included in the same interval as the spectrum of t
original matrix A. Thus, the stability condition of the FD scheme that uses the new optin
steps is more relaxed than that of the original scheme.

The second reason is that this new approach allows us to pass from the solution of
equidistant scheme to the solution of the optimal scheme (and back) with minimal err
by the procedures of “expansion” and “reduction,” the details of which, as well as th
importance and applications, are described below.

Of course, when these reasons are not of importance, one can successfully use the
obtained by a process of RadChebyshev approximation of the continuous impedance

1— g2V 2 1 (i —1/2)1?
U(O)—f()»)—m—tgm, 5—-{#} .

The process of getting these steps is exactly the same: the pdigbatffall on the spectral
interval in question are matched exactly, and the remaining smooth part is approximg
using the algorithm of Section 3.1.

4. EXPANSIONS AND REDUCTIONS

We now present an algorithm for calculating an accurate approximation to the sc
tion u(x, A) for the pointsx = (i — 1)h,i =1, ..., N, corresponding to the nodes of the
equidistant grid, by using the finite-difference solution produced by the optimal scheme.
assumed here that the optimal grid steps are obtained by tke@hdbyshev approximation
of the equidistant scheme currently under consideration.

To fix notation, consider the two spadg¥ andRX. In the following discussion, we will
denote elements from the two spaces and corresponding matrix spaces (e.g., basis ve
identity matrices, etc.) by the same names, only distinguishing them by sub- or supersc
N andk (or tags “op” for “optimal” and “eq” for “equidistant”) wherever necessary.
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Let A and H be defined as before, with the eigenpaias, 7 ) and (6;,5), respec-
tively, and recall the notation fg = B(Ollj)/2~ Z = B %% (note that(s,, BopS;) = 8,
(i, Begzj) = &ij)-

By construction ofH, 6 = & fori <n, §1 =274 fori <n. Herenis such tha €
[A1, Ag] fori < n.

Let Z be the matrix consisting of the vectdtsas columns. Consider a decomposition
of vector spac®" into an orthogonal sum of subspad®$ = sparizi, ..., Z,} andR} =
RN o RY. LetP, = diag(1, ..., 1,0,..., 0}, where the number of 1’s on the diagonahjs
andP, = I — P;. We willwrite b® = (ZP,ZT)bandb® = (Z R,ZT)b for the projections
onto subspaceR) andR) of any vector be R™; obviously,b = b® +b@,

We will also consider another decomposition of every vect@®'tif a = (—eg/zb then
we will write a = & + & wherea = B, °b® anda = By “b?.

All N x N matrices can also be decomposedvas=- M® + M@ where

MO = (ZP.Z"HYM(ZP,ZT) and M@ = (ZRZT)M(ZP,ZT).

The corresponding decompositionsif can be obtained analogously if one takes instea
of Z the matrixS consisting of the eigenvectagsof H as columns and takd, instead
of B(eq).

4.1. Expansions
We want to construct an approximatianto uy such that
(i) Gy =adn;
(i) U isa(k — n)-step Lanczos approximation tg;
(iii) theimpedance ofl, is the same asthatof, i.e.,u; 1 = Ux1 = Zik=1 512,1/@ —6).

Condition (i) is easily satisfied by putting

n n n
- —1/20 - - 41 4 Z, Z S,
— 0y =B 1/2u(,\}):h Y2 g-1/2 15 EN = _10-Zi_ 4.1)

]
c

(e 1(eq Beg — L4 —
i=1 A—ay i=1 A—a i=1 A =0
To satisfy condition (ii), we first note thak = B o, -0}’ whlegeﬂ(Nz)_hI%éz (A — A@)-lg.
So, a condition equivalent to (i) would be thaqt = B/%u? Whereu(z) is a Lanczos

approximation tou<2). This approximation should be carefuIIy devised so that the mo:
important condition (iii) is satisfied.

CLAM 4.1. Letg(x)= —x/(1 —x?),d(X)=1/9(X), G=«(A®), ¢ = h[%éfpg(G)el,

and F(x) = [x» — «(X)"1]71d(x), wherex is defined by3 4). Perform a Lanczos process to
evaluate the approximatiof to iy = = F(G)g in R} with the scalar producta, b)g =

{(a, d(G)h); i.e., obtain the trldlagonal matrid and the Lanczos matrix & 1, .-+, qk)-
Then the matrixi’ coincides with the matrix, obtained in the Lanczos process describec
in Section3, and condition(iii) above is satisfied.

To check that the two matrices are the same, we calculate the corresponding mom
The moments of the Lanczos process described in Section 3 are

N

0 0
|y ey | —k(X) _ —K(&) 52
/_,)t dz(t) _/ K (X) 1= r (02 ()2 dr(x) = E 1_r@)? K(a)zx(a) z,.

e i=n+1
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For the Lanczos process we are carrying now, eigendecomposition yields

N
(Gl. ¢)a = M1 (o (G'g(G)er. d(G)g(G)ear) = Y (@) glr(a)’d(x(a))z,
i=n+1
N @)
= —— k(@) 2.
izzn;ll—x(anz !

Hence, the two tridiagonal matrices are equal.
The approximatioriil® to i(? now takes the SLDM form (see Appendix A, formula
(A.3)

k—n

= lellaQF(Mer = llella > _ bjaF (). (4.2)

j—1

o]
=
N

wherell¢llq = +/{¢, )4 and&j = Qbj. For the norm ofp we have

13 = My feq (a(G)er. d(G)a(G)er) = hyfq (9(Ger. €1)
N
_p-1 52 —K (&) 2
- eq)i_nz+lg(’((al))z|,1 i;ll_x(ai)zzl,l

0 kX
‘/_w 1=z 07 /d“”l”

where 1 is the initial vector for the Lanczos process considered in Section 3.1. We t

obtain
o) = b = ( 2] Il (i)— bl o2
P2 1-t2 ) 112 \y; sj2+n1

where (3.7) and (3.8) were used, and hence

2

1 Sj
i 1 1_ j+n,1
W) = )9 =G S AT

Calculating the first component of the vecﬁﬁ), we get

k—n
= llella > F(tpbj1(&. e)
j=1
~ k—n
= llpllashi/ag > F(tbj.a(b;. QTd(G)p)
= (4.3)

k—n
l 2
= lel3h 5y D Ftpb?,
j=1

k—n 2
_ pL2 Si4n1

1(eq T
oA Oj+n
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Now, sincel ; = (B(egzufz), ) = h[%éf»uﬂ, the impedance of the “bar” part of the

approximate solution is given by

k—n 2
— Sjtn,1
TR S
j=1 —VYJ+n

which, together with (4.1), implies condition (iii).
Overall, the expression far is

— -1/2 -1/2 J+nl
uy lella )_&F(t)bi=B £
P JZ; P e Z 'bj.1ll@lla(k — jn)

k=n k—n
Sji+nl n-1/2 <SJ 1 1 ) g1/ Sj+n,1 —1/2
=2 5 . Dea bl ol g —0gt) V2
Jz:;)‘_gjm €@ >\ bja Nl Jz; © >y — G

Thus the final form of approximatiom is

n k—n
S1 Sj+n,1
u = —7 i ——Bi, 4.4
| iz:;k—ei'—i_;%k—@jmﬁj (4.4)

with
_ —1/2
aj = g(t) Y% B =By &

Using the fact thafuk, BopS) = S,1/( — 6;), we can rewrite (4.4) as

n k—n
ur =Y (U BopS )z + Y aj{Uk, BopSj:n)Bi- (4.5)
i—1 =1

One can now see that the approximation does not depenckgplicitly, and hence it can
be easily transformed into the time domain. The vedtors called theexpansiorof the
optimal solutionuy into the spac&®N. So, (4.5) is equivalent to (1.1).

4.2. Reductions

We now present a procedure that in some sense is an inverse to the expansion, i.e., st
from the solution of the equidistant scheme (residing in sffAte we construct an approx-
imation to the solution of the corresponding optimal scheme (in sR&ceAnalogously to
the term “grid reduction” we call this procedureeuction

We first note that, by construction,

(z,Beqgzj) =38ij, (zi,Begh)=0, fori,j<n, I <k-—n,
and

whereW = B(le/; QQT B(le/é (recall that, in generaQ Q" # I.)
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We thus have, according to (4.5),

<U| s B(eq)Zi> = <Uk, B(OP)S>7 i = 1,...,n,

and
(U|, W,BJ) = Olj<uk, B(op)Sj+n>, j = 1, o, N — k.

Hence the formula for getting the “optimal” solution back from the expanded one is

n

n—k
Uk = Z (Ui, Begzi)s + Zafl(ul , WBj)Sj4n. (4.6)
j=1

i=1

This formula is exact, but if we change the expanded solutjoabove to the true solution
uy of the equidistant scheme, we will get on the left of the above equation the “reduce
solution, which is equal tay, only approximately.

Formulas (4.5) and (4.6) allow us to pass from the finite-difference solution defined
the optimal grid to the one defined on the equidistant grid with minimal errors.

4.3. Expansion/Reduction for the Dual Problem

What happens if one wants to expand the derivatives of the finite-difference soluti
i.e., the data that are placed at the “derivative” noXl@sThis question is very important,
for when the simple scalar problem currently under consideration is changed to a ve
problem, e.g., the equations of elasticity, data at “potential” nodes and data at “derivati
nodes are no longer connected by a simple finite differentiation, and an updated expar
procedure is necessary.

Having constructed the approximation ~ uy, given by (4.5), we want to compute the
expansion of the solutiony = %Y(e@uN. We wish the approximant; to be calculated
directly from the solutiow, of the optimal scheme, rather than from the expanded potenti
solutionu; .

Considering (4.5), we easily construct

k—

V| = \/—Z YieqZi ) (Uk, BiopS ) + Z (YeeaBi) (Uk: BopSj+n)-

Recalling that =l =Yg

(op)vk, we get

1 11—
<ﬁukv B(op)3> = <Vkv Y(op) B(op)3> = <Vkv Coop [C(oyla)Y(og) B(Op)]S >
But it follows from (2.5) and (2.15) that

ct Y(op) BopS = — Xt

§= ~ g
(op) \/—_Gi

hence, we get the final formula for the expansion of the dual problem,

(op)

n

V) = Z <Vk, Cons (d) (d) + Z \/—<Vk’ C(Op)sl+n>Y(e°3’BJ’

i=1
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and the inverse formula (dual reduction) takes the form

n k—n
/—0
V=Y (V1. Ceaz)sV + > 705]]% Vi, W¥eeq 81 )Si -
i—1 j=1

4.4, Error Considerations

Formula (4.2) shows tha”flz) is the SLDM solution for the Lanczos process applied tc
F andg, at stepk — n, whereas (4.3) demonstrates tlﬁéﬁi is the Gaussian quadrature
approximation for the same Lanczos process. In [12, Section 5.1] the error estimates,
mulated in terms of Chebyshev coefficients of a functiqior SLDM (see Theorem 1) and
Gaussian quadrature associated with a Lanczos process (see Theorem 2) were compa
was proved that the former error bound atitfite step is close to the latter error bound at the
2mth step. Henceﬂﬁ is expected to converge twice as fasti®. Notwithstanding that
the actual errors may be essentially less than the corresponding upper bounds, our ex
ence has shown that the conclusion derived from the considered estimates is qualitati
realistic.

4.5. Experiment 1

To demonstrate the effectiveness of the transformation processes described above
consider the following example: we solve a one-dimensional scalar wave probleminthe i
domain orx € [0, 1], with a source positioned at= 0.5. In two separate experiments we
employ two different meshes: the equidistant one with 32 points per minimum wavelen
(or 576 nodes in total on [@]) and the optimal one, which is constructed to match the sarr
impedance (it turns out that the optimal mesh has a total of 58 nodes). Specifically, in
experiment in which the optimal mesh was employed, the optimal mesh was calculate
explained above for the range, [[] and then scaled from that range to [0, 0.5] and taken t
be symmetric around = 0.5.

In Fig. 3 one can see the signal recorded at 0.5 for both experiments—the waves are
indistinguishable (in fact, the?(t) error between the two signals is less than 0.5%, whicl
cannot be seen on the graph). It is noticeable that the recorded signal is not very acct
by itself: there is obvious dispersion present, and the signal peaks do not all have the s
magnitude; nevertheless, the difference between the solution computed on the optimal r
and that on the equidistant mesh is small.

At this stage no expansion or reduction was used (or needed), because the signals
recorded at the same point where the source was introduced, i.e., at the point which
specially chosen to be producing the good accuracy.

Figure 4 shows the behavior of the solution at a certain time fox.allhe grid nodes
of the optimal mesh are shown by the black dots; the nodes of the equidistant mesh
not shown as they would be indistinguishably close to each other. One can see that
behavior of the optimal solution at points remote from the “receiver” is incredibly irregul:
and inaccurate, compared to the one computed on the equidistant grid.

However, in fact there are not two, but four graphs present in Fig. 4: the solution on e:
mesh, the expansion of the optimal solution, and the reduction of the equidistant one. Tt
transformed solutions are so close to their true counterparts on the corresponding mest
one cannot differentiate them on the pictuk&(x) error is again less than 0.5%).
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FIG. 3. Recorded signal for Experiment 1.
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FIG. 4. Behavior of the optimal and equidistant solutions for Experiment 1 as functiordafa certain

time.



42 ASVADUROV, DRUSKIN, AND KNIZHNERMAN

This experiment demonstrates that when one needs to compute the solution of a hy
bolic equation at all times at a certain point, the use of the optimal mesh can decre
the amount of computation by as much as an order of magnitude over the use of
equidistant mesh, with no loss in accuracy. Moreover, when there is a need to comy
the solution on the whole 1D computational domain (or a 1D subdomain of a large
dimensional domain) at a certain time, the process of expansion is the tool that does
job.

5. NONMATCHING GRIDS: EXTENSION TO 2.5D CYLINDRICAL ELASTICITY

As another practical application of the transformation procedures described in the |
vious section we propose the following idea. Suppose the computational domain (wk
we can deem 2D or 3D by means of taking tensor product grids; see [2]) consists oOf <
eral regions, some of which have densely varying media, while the others have me
parameters varying on a larger scale. It would seem natural to grid the densely che
ing “blocks” (or subdomains) with a standard equidistant grid and perform standard :
eraging of media parameters there, while leaving the constant “blocks” gridded witt
much coarser optimal mesh (on which, unfortunately, the averaging of media parame
does not currently work and is a field of current research). The conjugation conditic
that are employed on the interfaces between optimal and equidistant regions require
use of expansion and reduction procedures while passing between the solution on
side to the solution at the other side for both the potential and derivative nodes on
grid.

Although on each of the described subregions the grid remains a tensor product,
resultingglobal grid will notbe a tensor product. We call such grids nonmatching.

The proposed scheme can be easily extended for computing solutions of equation
linear elastodynamics. We developed a program that solves these equations writtenin ¢
drical coordinates, for the so-called 2.5D case [2]. This programis used for geophysical te
such as computing acoustic responses of various tools in cylindrical borehole environm
The program allows for arbitrary rectangular decomposition of(the)-computational
domain, with an arbitrary optimal or equidistant choice for the gridding of each of tf
resulting subdomains in thedirection (the grid in the non-Cartesiardirection is kept
equidistant throughout). The resulting globally non-tensor-product grid is essential wt
the tool under consideration is finely detailed, while the parameters of the surround
formations are varying on a larger scale. A sketch of such a configuration is presente
Fig. 5. Here, the “borehole” region (on the left in the picture) is gridded in the equidista
fashion (the grid is shown in the vertical direction only), while the rest of the comput
tional domain is gridded with an optimal mesh, with the processes of expansion and rec
tion performed on the vertical interface between the regions for conjugation at every ti
step.

5.1. Experiment 2

To demonstrate the effectiveness of the proposed techniques, we compare the times !
on computing acoustic responses of the tool with the geometry presented in Fig. 6 (the fic
is not drawn to scale; the/z scale ratio is 1: 20). We compare the times used to compu
the solution on the nonmatching grid to the ones that were required to compute the s
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FIG.5. Proposed idea for domain decomposition: media changing on different scales.

responses on the grid that is equidistant throughout the computational domain (including
region of the absorbing boundary conditions, which are implemented as Perfectly Matc
Layers (PML) [4, 5]). The elastic parameters of the materials used in the configuration
presented in Table 1 and the signals recorded on the four receivers are shown in Fig.
as in the previous cases, the signals recorded by the two programs are indistinguish
with the L2(t) error approximately 0.4%. We note that to produce such an accuracy, |
interface between the equidistant and the optimal regions in the nonmatching grid prog
had to be positioned sufficiently far from the tool, in the region where the evanescent wa
resulting from the reflections of the direct acoustic field from the tool, are minimal. Tt
subdomain gridded equidistantly is on the left of the thin vertical line in Fig. 6 placed

TABLE 1
Materials Used in Experiment 2

Media Density (kg/)  Compressional speed (m/s)  Shear speed (m/s)
Background formation 2120 4690 2440
Steel 7900 5800 3100

Water 1000 1500 0
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FIG. 6. Media setup for Experiment 2.

r = 6 cm, while the subdomain on the right of that line is gridded in the optimal fashion
thez direction.

The source signal was taken to be the first derivative of the Blackman—Harris wind
centered at 3.3 kHz [2]. The specturm of the source can be considered negligible aro
three times the center frequency; thus the minimum wavelength in the problem is 15
The gridding in the direction was kept equidistant in both subdomains and was extreme
fine with 60 points per minimum wavelength, Ar = 0.25 cm. In the axial direction the
equidistant subdomain was gridded with 32 points per wavelength, while in the “optims
region (on the right in the picture) the average number of points per wavelength was |
than 4. The total number of mesh points (including the PML region) in the experiment
which the whole grid is kept equidistant was 150,000, while the total number of mesh poi
for the program with nonmatching grids was around 55,000. The advantage in grid po
translated directly to approximately a three fold increase speed observed in real time.
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FIG. 7. Acoustic field recorded at receiver points in Experiment 2.

APPENDIX A

The Lanczos Method

Let H be a linear space ov@ supplied with an inner produgt, .) and complete with
respect to it. LetA : H — H be a bounded self-adjoint linear operator andolet 7 be a
nonzero vector. The Lanczos method [13, Chap. 13] dtlitstep constructs an orthonormal
basisQ; = (qy, . .., d;) of the Krylov subspacé! (A, ¢) = sparip, Ag, ..., Al7lg}.

The following pseudo-Fortran code describes a Lanczos processghere € H and
aj, Bj € R):

r=¢

j=1

DO
IF (j = 1) THEN; ¢ = 1/||r||; ELSE; ¢ = 1/B;j_1; END IF
s=cr
r=As
IF(J#Dr=r—pj10j1
4; =S
aj =(qj,r)
r=r—aq;
Bi = lirll
Some additional computations
IF (convergencgEXIT
j=]+1

END DO
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In other words, the Lanczos method performs the Gram—Schmidt orthogonalization of
vectorsy, Ag, ..., A" 1y by means of the three-term recurrence

Agj = Bj—1Qj-1 +ojdj + Bjqj+1, j=12...,

whereBgqo is assumed to be, @; = ¢/| ¢, andg; > O.
Define byHy, the tridiagonal symmetric matrix

a1 P1 0
e R (A1)
b ﬂn.],]_ Om

Note thatH,, = Q;AQm is the Raleigh—Ritz approximation & on X™(A, ¢).

The exact computations in the step label&bfhe additional computatichdepend on
what we actually wish to achieve. For example, if we want to compute the eigenvalues
A, we shall find good approximants to them among thosklgffor sufficiently largem,
with well separated eigenvalues converging faster than the others.

There are two fundamental identities associated with the Lanczos method. The firs
the power identity

Ao = |lo|QuHier, k=0,....m—1 (A.2)

The Spectral Lanczos Decomposition Method (SLDM), which is based on this identi
computes the approximation for the vectiofA)p, where f is a smooth function defined
on the spectral interval oA. The SLDM approximation is given by

f(Ag = [lo[Qmf (Hm)er. (A.3)

Let T, be Chebyshev polynomials with the argument linearly shifted from the spect
interval of A on the segment{1, 1]. In [9] one can find the following result:

THEOREM1. |If the series
Fo0=> fifkx (A.4)
k=0
converges absolutely on the spectral interval pthn the following inequality holds

I (A1 — Qm f (Hwerl <2 [ful. (A5)

k=m

The second identity is called the moment identity and is also sometimes referred to as
Gaussian quadrature:

(A9, 0) = llpl?(Hier, &),  k=0,....,2m—1. (A.6)

Again, for a general enough functidnwe have [12]



DIFFERENCE GAUSSIAN RULES FOR HYPERBOLIC PROBLEMS 47

THEOREMZ2. If the seriegA.4) converges absolutely on the spectral interval pftéen
the estimate

I (AL ar) — (F(Hmer el <2 [ fil (A7)
k=2m

takes place.

We do not touch the problem of round-off errors in the Lanczos method, because in
programs related to this paper we use reorthogonalization, which provides us with a suit
level of stability.

There exists arelation among the Lanczos method, orthogonal polynomials, and Gaus
guadratures and moments [10].

Let u be a unit positive measure @ with a finite support; it determines in the space
L2, the inner productu, v) = | uvdu. Consider in this space time-step Lanczos process
with the operatoA being the multiplication by the independent variable, i*df.,= x f for
f € Ly, and the initial vectog = 1 (a constant unit function). The resulting Lanczos
vectorsry (with 73 = 1) will be polynomials of degrek — 1, orthonormal with respect to
the above inner product. Moreover, the moment relation yieldk fer0, ..., 2m — 1

/X"dpc: (Ap, ) = llpll*(Hyer e1) Zékﬁzl, (A.8)

where @;, 5) are the eigenpairs dfl;,, with normalized eigenvectors, and we used the
eigendecomposition theorem and the fact thay? = ||1|> = [ dx = 1. This formula
presents thenth-order Gaussian quadrature rule for the meagure

One can also define a spectral meagufeassociated with matrikl,, which is a discrete
measure whose weights are the squares of the first components of the eigenveldiprs ¢
positioned at the eigenvalues Hf, (the roots ofry,1, which lie in the support oft). In
this case Eq. (A.8) can be rewritten as

/xkduz/xkdum, k=0,...,2m— 1. (A.9)

APPENDIX B

Computation of Grid Steps: The Stieltjes Inverse Problem

Given the impedance function of the form

m

fm()k) =

i=1

Y yi>0,0i<0,i=1,

—, Lo, m, B.1
A — 6 - (B.1)

we want to compute the steps of the corresponding finite-differencéngeiddh; . This is
the same as solving the inverse impedance problem for a stringrénown point masses
h; and weightless springs with stifness$gslt is known that the impedance of such a string
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is a finite Stieltjes continued fraction

1
fm(2) = - 1 , (B.2)
hix + 1
hy + - 1
hod + ... 1

hm—1+A 1

hmA + —

m +hm
h >0, hh>0, i=1...,m, (B.3)

i.e., we need to transform (B.1) to (B.2). Stieltjes proved that there is bijection betwe
these two expressions, and the latter can be found with the help of the Stieltjes mon
problem (sometimes also called the layer-stripping algorithm) [3, 11]. However, in sor
cases the classical Stieltjes method is numerically unstable. Here we present a sufficie
stable modification of this algorithm, based on the Lanczos method with reorthogonalizat
according to [6].

1. Compute

- 1 - _
h =m0 S=Ml=l,...,m. (B.4)
2ima Vi

2. Obtain a symmetric tridiagonal matrik,, of type (A.1), starting in the spad®™ the
Lanczos process (see Appendix A) with the matrix diag(. ., 6n) and the initial vector
(S1,...,Sm)". Actually, this solves an inverse spectral problem [13, Theorem 7.2.1]. T
avoid loss of orthogonality of the Lanczos vectors in finite precision arithmetic, which m;
cause some artificial irregularity in the grid structure, we recommend that reorthogonali
tion be used.

3. Perform a recursion for the grid steps,

1 ~ 1 1
= h=———— =2k
Biahi_qhi1

hl = - = 3
aihi +1/hi_;

hioy’

starting fromh; determined in (B.4).
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